1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
| library(MASS)
x <-rgamma(100, shape =5, rate =0.1) res <- fitdistr(x, "gamma") h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dgamma(xfit,res[[1]][1],res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
x <-rbeta(100, shape1 =5, shape2 =2) res <- fitdistr(x, "beta", start=list(shape1 =4, shape2 =1)) h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dbeta(xfit,res[[1]][1],res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"cauchy", x <-rcauchy(100, location =200, scale=300) res <- fitdistr(x, "cauchy") h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dcauchy(xfit,res[[1]][1],res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"chi-squared", x <-rchisq(100, df=5, ncp =2) res <- fitdistr(x, "chi-squared", start=list(df=2, ncp =1)) h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dchisq(xfit,res[[1]][1],res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"exponential" x <-rexp(100, rate =10) res <- fitdistr(x, "exponential") h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dexp(xfit,res[[1]][1]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"f" x <-rf(100, df1 =60, df2 =50) res <- fitdistr(x, "f", start=list(df1 =10, df2 =2)) h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-df(xfit,res[[1]][1], res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"lognormal" x <-rlnorm(100, meanlog =5, sdlog =1.5) res <- fitdistr(x, "lognormal") h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dlnorm(xfit,res[[1]][1], res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"logistic", x <-rlogis(100, location =5, scale=2) res <- fitdistr(x, "logistic", start=list(location=5, scale=2)) h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dlogis(xfit,res[[1]][1], res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"negative binomial", x <-rnbinom(100, size =300, prob =.3) res <- fitdistr(x, "negative binomial") h <-hist(x) xfit <-floor(seq(min(x), max(x), by=(max(x)-min(x))/100)) yfit <-dnbinom(xfit,size = res[[1]][1], mu = res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"normal" x <-rnorm(100, mean=15, sd=2) res <- fitdistr(x, "normal") h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dnorm(xfit, mean= res[[1]][1], sd= res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"Poisson", x <-rpois(100, lambda =400) res <- fitdistr(x, "Poisson") h <-hist(x) xfit <-floor(seq(min(x), max(x), by=(max(x)-min(x))/100)) yfit <-dpois(xfit,res[[1]][1]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"t" x <-rt(100, df=5) res <- fitdistr(x, "t") h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dt(xfit,res[[1]][3]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
"weibull" x <-rweibull(100, shape =5, scale=9) res <- fitdistr(x, "weibull", start=list(shape =1, scale=1)) h <-hist(x) xfit <-seq(min(x), max(x), by=(max(x)-min(x))/100) yfit <-dweibull(xfit,res[[1]][1], res[[1]][2]) yfit <- yfit*diff(h$mids[1:2])*length(xfit) lines(xfit, yfit, col="blue", lwd=2)
|